log公式 有关log的计算公式?

在思念里沉沦在思念里沉沦 2023-05-14 17:34:32 34 阅读

有关log的计算公式?

log(1/a)(1/b)=log

(a^-1)(b^-1)=-1logab/-1=loga

(b)loga(b)*logb(a)=1loge(x)=ln(x)lg(x)=log10(x)对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数

log公式 有关log的计算公式?

Log函数的有关公式?

(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)

(6)log(a^n)M^m=(m/n)log(a)M
(7)对数恒等式:a^log(a)N=N;  log(a)a^b=b

log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)loga(b)*logb(a)=1loge(x)=ln(x)lg(x)=log10(x)对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

1、log函数将自然数划为n个等区间,每个区间大小相等。但是每个区间的末端值以底数为倍数依次变化:10,100,1000; 2,4,8;即相对的小值间的间距占有和更大值的间距一样的区间。

2、函数y=logaX叫做对数函数。对数函数的定义域是(0,+∞).零和负数没有对数。

底数a为常数,其取值范围是(0,1)∪(1,+∞)。log的话我们是要加一个底数的,这个数可以是任何数,但lg不同,我们不能加底数,因为lg是log10的简写,就像㏑是loge的简写一样。

3、所有的对数函数计算核心都是利用多项式展开。然后多项式求和计算结果。为了性能或者精度的要求可能会对展开后的求和式子做进一步优化。

对数函数log的各种公式有哪些?

性质  ①loga(1)=0;   ②loga(a)=1;   

③负数与零无对数.运算法则  ①loga(MN)=logaM+logaN;   

②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM;    如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数的底。定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b)  基本性质:1、a^(log(a)(b))=b    2、log(a)(MN)=log(a)(M)+log(a)(N);   

3、log(a)(M÷N)=log(a)(M)-log(a)(N);   

4、log(a)(M^n)=nlog(a)(M)   

5、log(a^n)M=1/nlog(a)(M)   推导:   1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。   

2、MN=M×N   由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] ,由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} ,又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N)   

对数的运算法则及公式?

对数函数运算法则公式是如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。

一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

到此,以上就是小编对于log公式的问题就介绍到这了,希望介绍关于log公式的4点解答对大家有用。

版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。

上一篇 下一篇