高考数学必备公式?
1、三角函数公式:
(1)正弦定理:a/sinA=b/sinB=c/sinC;
(2)余弦定理:a2=b2+c2-2bc cosA;
(3)正切定理:tanA/a=tanB/b=tanC/c;
2、勾股定理:a2+b2=c2;
3、比例定理:a/b=c/d;
4、平面向量公式:
(1)点积公式:a·b=|a||b|cosθ;
(2)叉积公式:a×b=|a||b|sinθ;
5、椭圆方程:x2/a2+y2/b2=1;
6、抛物线方程:y2=2px;
7、双曲线方程:x2/a2-y2/b2=1;
8、极坐标方程:x=rcosθ,y=rsinθ;
9、指数函数公式:y=a·bx;
10、对数函数公式:y=loga x;
11、几何平均数公式:a1+a2+…+an/n;
12、等比数列公式:an=a1·qn-1;
13、等差数列公式:Sn=n(a1+an)/2;
14、组合数公式:Cn=n!/(n-m)!m!;
15、概率公式:P(A)=n(A)/n(S);
16、三角形面积公式:S=1/2ab·sinC;
17、圆面积公式:S=πr2;
18、梯形面积公式:S=1/2(a+b)h;
19、椭圆面积公式:S=πab;
20、体积公式:V=S·h;
1、全等式的公式:a + b = c,其中a,b,c是任意实数。
2、一次函数求根公式:ax+b=0,x=-b/a。
3、二次函数求根公式:ax2+bx+c=0,x1=(-b+√(b2-4ac))/2a,x2=(-b-√(b2-4ac))/2a。
4、三角形面积公式:S=1/2ab sinC,其中a,b是三角形的两边长,C是两边夹角。
5、圆周率π的近似值:π≈3.1415926。
高考必背数学公式?
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;
f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
4、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
5、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6、抛物线
1、抛物线:y=ax*+bx+c就是y等于ax的平方加上bx再加上c。
a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)*+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2pxx^2=2py
1. 高等数学:
• 矩阵乘法:AB = BA
• 二次函数标准形式:y = ax² + bx + c
• 用三角形法求面积:S = 1/2ab sin C
• 用勾股定理求三角形边长:a² + b² = c²
2. 集合:
• 交集:A ∩ B
• 并集:A ∪ B
• 差集:A - B
• 对称差:A Δ B = (A - B) ∪ (B - A)
3. 概率:
• 条件概率:P(A|B) = P(A ∩ B) / P(B)
• 贝叶斯公式:P(A|B) = P(B|A)P(A) / P(B)
• 全概率公式:P(A) = P(A ∩ B) + P(A ∩ B)
以下是必备的诱导公式常用的诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
希望能帮到您
到此,以上就是小编对于高考数学复习公式的问题就介绍到这了,希望介绍关于高考数学复习公式的2点解答对大家有用。
版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。