费马大定理证明过程(费马大定理证明过程中文版怀尔斯)

一把感情刀一把感情刀 2023-04-10 10:28:01 47 阅读

费马大定理证明过程是什么样的?

费马大定理的证明方法:x+y=z有无穷多组整数解,称为一个三元组;x^2+y^2=z^2也有无穷多组整数解,这个结论在毕达哥拉斯时代就被他的学生证明,称为毕达哥拉斯三元组,我们中国人称他们为勾股数。但x^3+y^3=z^3却始终没找到整数解。

最接近的是:6^3+8^3=9^-1,还是差了1。

费马大定理证明过程(费马大定理证明过程中文版怀尔斯)

于是迄今为止最伟大的业余数学家费马提出了猜想:总的来说,不可能将一个高于2次的幂写成两个同样次幂的和。因此,就有了: 已知:a^2+b^2=c^2 令c=b+k,k=1.2.3……,则a^2+b^2=(b+k)^2。 因为,整数c必然要比a与b都要大,而且至少要大于1,所以k=1.2.3…… 设:a=d^(n/2),b=h^(n/2),c=p^(n/2); 则a^2+b^2=c^2就可以写成d^n+h^n=p^n,n=1.2.3…… 当n=1时,d+h=p,d、h与p可以是任意整数。 当n=2时,a=d,b=h,c=p,则d^2+h^2=p^2 => a^2+b^2=c^2。

当n≥3时,a^2=d^n,b^2=h^n,c^2=p^n。 因为,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保证d、h、p为整数,就必须保证a、b、c必须都是完全平方数。 a、b、c必须是整数的平方,才能使d、h、p在d^n+h^n=p^n公式中为整数。

假若d、h、p不能在公式中同时以整数的形式存在的话,则费马大定理成立。 扩展资料 关于费马大定理也有不少小插曲,德国人保罗·沃尔夫斯凯尔为费马大定理设立专项基金即是其中之一。按照人们的一般说法,沃尔夫斯凯尔因为失恋而试图结束自己的生命。

在他认为一切就绪,准备于某日午夜准时开枪自尽前的一段时间里,发现了一篇关于费马大定理的论文。 碰巧的是,沃尔夫斯凯尔本人是一个数学爱好者,不知不觉中竟沉湎于论文中,结果错过了原定的自杀时间。之后,沃尔夫斯凯尔放弃了自杀的念头,并在死前留下遗嘱,把一大笔财富作为奖给第一个证明费马大定理的人,有效期到2007年。

美国普林斯顿大学教授安德鲁·怀尔斯经过7年的潜心研究,于1993年公布了他对费马大定理的证明。他的证明在1995年得到确认并最终获得了沃尔夫斯凯尔留下的奖金。 怀尔斯的证明长达一百多页,其中涉及许多最新的数学知识,目前在世界范围内能看懂的人也屈指可数。因此出现了这样的争议:有人认为这不可能是当年费马所想到的证明,应该还有种比这简单的证明未被发现;但也有许多人认为当年的费马其实毫无发现,或者只是想到了一个错误的方法。

求费马大定理的全部证明过程!!!

费马大定理证明过程(费马大定理证明过程中文版怀尔斯)

 费马大定理证明过程: 对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。

本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。

关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式 引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。

本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。 定义1.费马方程 人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。 在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。

当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支. 定义2.增元求解法 在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。 利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。

下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。 一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则” 定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件: a≥3 { b=(a^2-Q^2)÷2Q c= Q+b 则此时,a^2+b^2=c^2是整数解; 证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形: Q2 Qb 其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长 Qb 为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。

故定理1得证 应用例子: 例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解? 解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到: a= 15 { b=(a^2- Q^2)÷2Q=(15^2-1^2)÷2 =112 c=Q+b=1+112=113 所以得到平方整数解15^2+112^2=113^2 再取a为15,选增元项Q为3,根据定a计算法则得到: a= 15 { b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36 c=Q+b=3+36=39 所以得到平方整数解15^2+36^2=39^2 定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。 二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则” 定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。 证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c; b 2b 3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c; 3b 4b 3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。 故定理2得证 应用例子: 例2.证明303^2+404^2=505^2是整数解? 解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计 4 算法则,以直角三角形 3×101 5×101 关系为边长时,必有 4×101 303^2+404^2=505^2是整数解。

三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则” 3a + 2c + n = a1 (这里n=b-a之差,n=1、2、3…) 定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。 证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有: a1=3×3+2×5+1=20 这时得到 20^2+21^2=29^2 继续利用公式计算得到: a2=3×20+2×29+1=119 这时得到 119^2+120^2=169^2 继续利用公式计算得到 a3=3×119+2×169+1=696 这时得到 696^2+697^2=985^2 … 故定差为1关系成立 现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有: a1=3×21+2×35+7=140 这时得到 140^2+147^2=203^2 继续利用公式计算得到: a2=3×140+2×203+7=833 这时得到 833^2+840^2=1183^2 继续利用公式计算得到: a3=3×833+2×1183+7=4872 这时得到 4872^2+4879^2=6895^2 … 故定差为7关系成立 再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有: a1=3×387+2×645+129=2580 这时得到 2580^2+2709^2=3741^2 继续利用公式计算得到: a2=3×2580+2×3741+129=15351 这时得到 15351^2+15480^2=21801^2 继续利用公式计算得到: a3=3×15351+2×21801+129=89784 这时得到 89784^2+89913^2=127065^2 … 故定差为129关系成立 故定差n计算法则成立 故定理3得证 四,平方整数解a^2+^b2=c^2的a值奇偶数列法则: 定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立; (一) 奇数列a: 若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是: a=2n+1 { c=n^2+(n+1)^2 b=c-1 证:由本式条件分别取n=1、2、3 … 时得到: 3^2+4^2=5^2 5^2+12^2=13^2 7^2+24^2=25^2 9^2+40^2=41^2 11^2+60^2=61^2 13^2+84^2=85^2 … 故得到奇数列a关系成立 (二)偶数列a: 若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是: a=2n+2 { c=1+(n+1)^2 b=c-2 证:由本式条件分别取n=1、2、3 … 时得到: 4^2+3^2=5^2 6^2+8^2=10^2 8^2+15^2=17^2 10^2+24^2=26^2 12^2+35^2=37^2 14^2+48^2=50^2 … 故得到偶数列a关系成立 故定理4关系成立 由此得到,在直角三角形a、b、c三边中: b-a之差可为1、2、3… a-b之差可为1、2、3… c-a之差可为1、2、3… c-b之差可为1、2、3… 定差平方整数解有无穷多种; 每种定差平方整数解有无穷多个。 以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。

证明如下: 我们首先证明,增比计算法则在任意方次幂时都成立。 定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。 证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1, 得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m 原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m) 两边消掉 n^m后得到原式。 所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。

故定理5得证 定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。 证:取定理原式a^m+b=c^m 取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m 原式化为: n^m(a^m+b)=n^mc^m 两边消掉n^m后得到原式。 由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。

所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。 故定理6得证 一元代数式的绝对方幂与绝对非方幂性质 定义3,绝对某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。

例如:n^2+2n+1,n^2+4n+4, n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。 一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。 定义4,绝对非某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。

当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。 一元绝对非某次方幂式的一般形式为:在(n+b)^m(m>2,b为常数项)的展开项中减除其中某一项。 推理:不是绝对m次方幂式和绝对非m次方幂式的方幂代数式必定在未知数取某一值时得出一个完全m次方数。

例如:3n^2+4n+1不是绝对非3次方幂式,取n=1时有3n^2+4n+1=8=2^3,3n^2+3n+1不是绝对非2次方幂式,当n=7时,3n^2+3n+1=169=13^2; 推理:不含方幂项的一元代数式对任何方幂没有唯一性。2n+1=9=3^2,2n+1=49=7^2 …… 4n+4=64=8^2,4n+4=256=16^2 ……2n+1=27=3^3,2n+1=125=5^3 …… 证明:一元代数式存在m次绝对非方幂式; 在一元代数式中,未知数的不同取值,代数式将得到不同的计算结果。未知数与代式计算结果间的对应关系是唯一的,是等式可逆的,是纯粹的定解关系。这就是一元代数式的代数公理。

即可由代入未知数值的办法对代数式求值,又可在给定代数式数值的条件下反过来对未知数求值。利用一元代数式的这些性质,我们可实现整数的奇偶分类、余数分类和方幂分类。 当常数项为1时,完全立方数一元代数表达式的4项式的固定形式是(n+1)^3=n^3+3n^2+3n+1,它一共由包括2个方幂项在内的4个单项项元组成,对这个代数式中3个未知数项中任意一项的改动和缺失,代数式都无法得出完全立方数。

在保留常数项的前提下,我们锁定其中的任意3项,则可得到必定含有方幂项的3个不同的一元代数式,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,对这3个代数式来说,使代数式的值成为立方数只能有唯一一个解,即补上缺失的第4项值,而且这个缺失项不取不行,取其它项值也不行。因为这些代数式与原立方代数式形成了固定的单项定差代数关系,这种代数关系的存在与未知数取值无关。这种关系是: (n+1)^3-3n= n^3+3n^2+1 (n+1)^3-3n^2= n^3+3n+1 (n+1)^3-n^3=3n^2+3n+1 所以得到:当取n=1、2、3、4、5 … n^3+3n^2+1≠(n+1)^3 n^3+3n+1≠(n+1)^3 3n2+3n+1≠(n+。

版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。

上一篇 下一篇