什么是余弦定理?
余弦定理,欧氏平面几何学基本定理。余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。
公式:a^2=b^2+c^2-2bccosA
一条边的平方,等于另两条边的平方和,减去另两条边与夹角余弦成绩的2倍。
左边是一条边a,右边的余弦是a对应的角A,右边的边都是b和c,这样记可能容易点。
比如一个三角形ABC中,∠C=90°。则AB叫做斜边,AC叫做∠A的邻边,BC叫做∠A的对边,所以cosA=AC/AB,sinA=BC/AB,同理cosB=BC/AB,sinB=AC/AB。
正弦定理余弦定理及推论?
定理:
1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。
2、余弦定理: cosα=(B^2+C^2-A^2)/2BC cosb=(A^2+C^2-B^2)/2AC cosc=(A^2+B^2-C^2)/2AB 推论:
(1)任一多边形的每一条边的平方都等于其它各边的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的(共面或异面)夹角.。
(2)任一多面体的每一面的面积的平方都等于其它各面的面积的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的二面角。
(3)正切
答:①正弦定理:
一个三角形的每一条边5它所对的角的正弦值的比都等于同一个常,即这个三角形外接圆的直径,即
设a,b,c为三角形的三边,它们所对的角分别为角A,角B,角C,R为三角形外接圆的半经,则
a/sinA=b/sinB=c/sⅰnC=2R。
②余弦定理
三角形任一边的平方等于其他两边的平方和减去这两边与它们的夹角的余的2倍,即,
a^2=b^2+c^2-2bccosA,
b^2=c^2+a^2-2cacosB,
c^2=b^2+a^2-2bacosC。
或者将上面三式变形为,
cosA=(b^2+c^2-a^2)/2bc,
类似的可将其他两个等式变形。
余弦定理的性质?
余弦定理性质
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质--
a^2 = b^2 + c^2 - 2·b·c·cosA
b^2 = a^2 + c^2 - 2·a·c·cosB
c^2 = a^2 + b^2 - 2·a·b·cosC
cosC = (a^2 + b^2 - c^2) / (2·a·b)
cosB = (a^2 + c^2 - b^2) / (2·a·c)
cosA = (c^2 + b^2 - a^2) / (2·b·c)
(物理力学方面的平行四边形定则以及电学方面正弦电路向量分析也会用到)
第一余弦定理(任意三角形射影定理)
设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有
a=b·cos C+c·cos B, b=c·cos A+a·cos C, c=a·cos B+b·cos A。
三角形的余弦定理?
三角形余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。
三角形三条边分别为a、b、c,其对应的角分别为∠a、∠b、∠c,则
余弦定理可表示为:
c²=a²+b²-2abcos(∠c)
同理,也可描述为:
b²=a²+c²-2accos(∠b)
a²=b²+c²-2bccos(∠a)
当∠c为90°时,cos(∠c)=0,余弦定理可简化为c²=a²+b²,即勾股定理。
对于边长为a、b、c而相应角为A、B、C的三角形,有:
a2=b2+c2-2bc·cosA
b2=a2+c2-2ac·cosB
c2=a2+b2-2ab·cosC
也可表示为:
cosC=(a2+b2-c2)/2ab
cosB=(a2+c2-b2)/2ac
cosA=(c2+b2-a2)/2bc
这个定理也可以通过把三角形分为两个直角三角形来证明。
如果这个角不是两条边的夹角,那么三角形可能不是唯一的(边-边-角)。要小心余弦定理的这种歧义情况。
到此,以上就是小编对于余弦定理的问题就介绍到这了,希望介绍关于余弦定理的4点解答对大家有用。
版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。