排列组合公式及算法数学高考?高三数学排列组合问题解题技巧?

阳光下的冬域阳光下的冬域 2023-06-27 03:26:43 59 阅读

排列组合公式及算法数学高考?

一、排列组合定义

从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

二、排列组合公式

排列组合公式及算法数学高考?高三数学排列组合问题解题技巧?

A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

C-Combination 组合数

A-Arrangement 排列数

n-元素的总个数

m-参与选择的元素个数

!-阶乘

三、排列组合基本计数原理

加法原理与分布计数法

1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

乘法原理与分布计数法

1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

排列组合是数学中重要的概念,排列是从n个不同物品中取出m(m≤n)个物品,并將这m个物品按照一定顺序排列起来;组合是从n个不同物品中取出m(m≤n)个物品,并将这m个物品放在一起,但不考虑排列的顺序。排列组合的计算公式为:A(n,m) = n!/(n-m)!。高考中,排列组合被广泛应用于求解多项式、组合数学、概率论等方面的问题。

排列组合公式

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!*n2!*...*nk!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

高三数学排列组合问题解题技巧?

高中数学排列组合的各类经典解题技巧详解:

1、方法一:插空法;

2、方法二、捆绑法;

3、方法三、转化法;

4、方法四、剩余法;

5、方法五、对等法;

6、方法六、排除法等各类经典快速解法

解决排列组合问题对学生的抽象思维能力和逻辑思维能力要求较高.通过多年的教学

我们会发现,学生解决排列组合问题时出现的错误往往具有普遍性,因此,分析学生

解题中的这些常犯错误,充分暴露其错误的思维过程,使学生认识到出错的原因,可

使他们在比较中对正确的思维过程留下更深刻的印象,从而有效地提高解题准确率。

学生在解排列组合题时常犯以下几类错误:

1、“加法”“乘法”原理混淆;

2、“排列”“组合”概念混淆;

3、重复计数;

4、漏解.

排列组合在高考中的比重?

排列组合作为高中阶段数学学科的一个重要章节,在每年的全国普通高召考试中都会有所涉及。但是,有关排列组合在整套试卷中的分值都不会太高。就分值而言,大概占比约为5%左右。就题型设计而言,大比率都是以填空或者选择的型式出现。

到此,以上就是小编对于高考数学排列组合的问题就介绍到这了,希望介绍关于高考数学排列组合的3点解答对大家有用。

版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。

上一篇 下一篇