椭圆的标准方程是什么?
椭圆的标准方程共分两种情况 :
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)
方程推导
设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。
以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。
设M(x,y)为椭圆上任意一点,根据椭圆定义知
|MF1|+|MF2|=2a,(a>0)
即
将方程两边同时平方,化简得
两边再平方,化简得
又
,设
,得
两边同除以
,得
这个形式是椭圆的标准方程。
通常认为圆是椭圆的一种特殊情况
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点
椭圆定义及标准方程?
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。
椭圆基本方程?
椭圆的一般标准方程为:x^2/a^2+y^2/b^2=1或者:x^2/b^2+y^2/a^2=1,(其中a>b>0)焦点分别在x轴和y轴上,椭圆:椭圆与圆很相似,不同之处在于椭圆有不同的x和y半径,而圆的x和y半径是相同的,在数学中,椭圆是平面上到两个固定点的距离之和是同一个常数的点的轨迹,这两个固定点叫做焦点,它是圆锥曲线的一种,即圆锥与平面的截线。
到此,以上就是小编对于椭圆及其标准方程的问题就介绍到这了,希望介绍关于椭圆及其标准方程的3点解答对大家有用。
版权声明:本文来自投稿用户,文章观点仅代表投稿用户本人,不代表天天想上网立场,本站仅提供存储服务,不承担相关法律责任,如有涉嫌抄袭侵权/违法违规内容,请发送邮件至964842246@qq.com举报,一经查实,本站将立刻删除。